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From Venn Diagrams to Peano Curves

We start by translating the structure of a two-valued
logic into a Venn diagram, which sets us certain drawing
tasks. Gradually losing our original aim, we let these
develop and see whal happens.

1.

A. In a two-valued logic, the consideration of
several independent attributes .o/y, o/,, &/, . . .
which are possessed or not possessed by all the
elements of a reference set, gives rise to a truth
table which can be conveniently laid out in the
form of a branching tree, where ‘T’ stands for
‘true’ and ‘F” for ‘false’.
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For two attributes this drawing of a partial
order gives four chains forming the sequence
TT, TF, F1, IIF; for three attributes a sequence of
eight chains: 777, TTF, TFT, TFF, FTT, FT.
FFT, FFF. With n attributes there is a sequence
of 2" chains which exhaust all the possibilities of
attributing ‘true’ or ‘false’ to the elements of the

«;@F

K Kz

Fig. 2

reference set. So each chain corresponds to a
logically defined subset which we will call an
elementary set of order n. Fundamental subsets are those
for which the elements give the same response
when tested on a single attribute; for example, Ay
is the subset of elements for which .27, is true; Ay’
the subset of elements for which .o, is false (and
so the complement of 4,). Similarly A4, is the
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subset for whose elements 7, is true, and so on.
Thus 4, corresponds to the set of chains which
have a T in the first place; 4, the set of chains
which have 7 in the second place, and so on.

B. When there are only a few attributes, the
situation described by the tree is represented by a
Venn diagram: each fundamental set 4,, 4,, . . .
is represented by a connected region (a single
piece) bounded by a simple closed curve (i.e. one
which does not cross itself ). The set of these
curves forms an overlapping pattern in which
the parts represent the elementary subsets. Making
the constraints more precise: two boundaries can cut each
other, but only in distinct points, and without a common
arc between them. "I'his set of curves is completed by
an outer boundary — a rectangle, for example —
which is covered by the set of regions at any
stage, onc of them being a ring.

It is easy to make a drawing for 1, 2 or 3 attri-
butes: we write the members of each chain in
each region of the pattern.

But the problem is to determine a strategy in
order to carry on the process to 4, 5, . . . attributes.
Can we keep to the constraints that we have
imposed on ourselves?

To find an answer let us look closely at how we
begin.

At the first stage, Fig. 3 consists of a loop with
its interior marked 7 and the annular region
marked F. At stage (2) we draw the boundary £,
with a dotted black line to show that it is the last
one to be drawn, and write the names of the four
chains of the tree. To get to stage (3), we mark a
(red) point in each of the elementary regions of
stage (2) and join them up, step by step, with red
arcs so that each arc crosses the common boundary
of the two regions. This arranges the regions in
order, and the three non-annular regions form a
strip. The linked regions are F7, 77T and TF,
which is not the natural order of the chains in a
tree, where F7 and TF would be consecutive.

On the diagram of the strip (2') (Fig. 3), as on
the Venn diagram (2), the new order is shown
with a directed red arc. By closing this arc in the
annular region, we get a new curve K, which,
drawn as a black dotted line, will serve for the
diagram of stage (3). (We must be quite sure that
a new boundary does not pass through any point
common to the existing curves.)

This is the procedure we follow. To define the
procedure more clearly, let us show how to allocate
numerals to the 5,_, =27-1—1 regions which make
up the strip at stage (¢—1). As each line K divides
each region from the previous stage into two parts,
it is natural to use base two notation. In (1) we put
0 for the annular region and 1 for the inside of the
loop. In (2) we use the four numerals consisting of
two digits. We will agree to mark the annular region
00 and follow the (arbitrary) sense of the red line.

At stage (¢) we will need 27 numerals each

consisting of ¢ digits.

Suppose the drawing has been completed up to
stage (¢—1). The diagram (¢’) of the strip shows
us how to pass to stage (g,. The strip comprises
the successive regions r,_;, 72, . . . whose
numerals, each of (g—1) digits, are

000...1,000...10, 111 ...1.

We draw a dotted black line down the middle
of the strip; it forms 27—2 regions. In order to
define the new strip, we give the regions ¢-digit
numerals following the red arc in the order
already used. Each elementary region of order
(¢—1) is divided into two parts which we indicate
by writing first 0 and then 1 at the right of the
numeral of the region. Therefore the red line
alternately crosses a dotted and a full line. In two
of the figures we see that an undotted arc is not
crossed within the strip, and will not be crossed in
what follows : we mark these in thick black. To get a
concrete realisation of the strip we must cut the
paper along the arcs which form its two edges.

As the ¢-digit numeral 000 . . . 0 is allocated to
the annular region, the numeral 000 . . . 1 is
reserved for the region obtained by closing the
dotted line; it becomes the first region of the
strip at stage (¢). The second region of this strip,
written 000 . . . 10, is one of the two regions formed
in rt,_; which is linked with the first region.

Lastly, since s,=27—1 is clearly odd, the red
arc definitely ends in the annular region, and
everything is ready for the next stage: the red
arc is closed, replaced by a dotted black line, and
the programme is re-run.

Itis important to stress that each red line, having
served to define the strip and its numbering, be-
comes the boundary at the next stage. The thick
black lines along which we can cut become longer
and fork in the Venn diagram. In moving from
one stage to the next, the digits of each numeral
are retained from the left. Consequently the
notation will tell us if one region is included in
another. The included region has more digits,
and so represents a larger number in base two.

We have already pointed out that our numbering
does not correspond to the order of the chains in
the logical tree. So how can we recognise the
elementary region which corresponds to each
fundamental set 4;, 4,, . . . ? These sets are deter-
mined by a certain number of digits from the left.
So if ¢ is the number of attributes, 4, is the set of
elementary regions having numerals.

{1} tor g=1

{10, 11} for ¢g=2

{100, 101, 110, 111} for ¢=3
In the same way, 01 . represents the set of
numerals with left hand digits 01, etc. We can
now draw up a useful table which shows the
composition of the fundamental regions for each
value of ¢. (We show the natural order of the
numerals by an arrow.)



Ay | {0...}

4, | {01 ...,10 ...}
AT

Ay | (00 ..., 11 ...}

A, | {001 ...,010 ...,101 ..., 110 ...}
r Ty r T
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A’y | {000 ...,011 ..., 100 ..., 111 ...}

A, | {0001 ..., 0010 ..., 0101 ..

—
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A4’ | {0000 ..., 0011 ..

A

..., 1101 ..., 1110 ...}

r Ty

—

0100 ..., ..., 1100 ..., 1111 ...}

The law is now obvious. To every Boolean
function formed by using complementation, inter-
section and union, corresponds a set of numerals
which can easily be written down from our know-
ledge of how to represent inclusion.

C. Rectilinear diagrams

Suppose we regard the numerals we have used
as sets of digits following a point: we have numbers
written in base two with the integral part zero.
All of these n-digit numbers, for all values of n,
belong to the interval I=[0, 1]. Knowing the first
digits after the point allows us to associate with
each elementary region an interval which is closed
on the left and open on the right. The union of
these intervals is [0, 1]. Sets of these intervals are
associated with the fundamental subsets. Let us
mark the images of 4;, 4,, . . . in red, and the
images of their complements in black. Then a
sequence of elementary regions from successive
stages, associated with the numbers 0-a;, 0-2;a,,
0-a, ay a, . . . (a;€{0, 1}), corresponds to a sequence
of nested intervals.
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If we imagine an infinite sequence of attributes,
an elementary region becomes associated with a

real number, and so with a point of [0, 1]. Con-
versely, each point of the interval can be associated
with at least one infinite sequence of elementary
regions, each one included in the next. It is
necessary to distinguish between, say, 0-110000

.,and 0-101111 . .., which are different forms
of the same number 0-11, because they do not
represent the same region. In the strip, however,
at each stage, the corresponding regions are con-
secutive, for example, in (2) we see 11 and 10;
in (3) we see 110 and 101; and in (4) we see 1100
and 1011, etc.

The question which now emerges is whether
each sequence of regions, each included in the
next, can be considered as defining a limiting
region. We will see how these conditious are et
in the next section.
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2.

In honour of Lewis

Dissection diagrams

Carroll we often draw
‘Carroll diagrams’ which, when there are two
attributes, represent each of the fundamental
subsets 4, and A4, by a half of a square formed by
bisecting opposite sides. By putting one on top of
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the other, we get a perfect representation of the
tree of order two. Unlike the Venn diagram, the
Carroll diagram allows each fundamental region
to play the same role as its complement. There is
no precedence accorded to the values ‘true’ and

‘false’.



How can we develop the diagram, though, to
deal with more than two attributes? It is tempting
to represent 4, by the interior of a circle whose
centre is at the centre of the square, and continue
with simple closed curves. But this is to recreate
the Venn diagram from an unsuitable beginning.
We have to try another direction. It is essential
always to divide each of the regions at stage (¢—1)
into two since we are dealing with a two-valued
logic. To help separate the regions we will still
preserve a cyllic order and, naturally, keep to a
base two notation. But the big difference is that
the red line (L), which shows the order of the
regions and which therefore defines a strip, will no
longer act as a boundary. The boundaries will be
found by dissecting the square into elementary
rectangles as we please.

In the diagrams, if the dissection corresponding
to the order (¢—1) is marked with black lines and
the edge of the strip with thick black lines, the next
order is obtained by tracing with a black dotted
line a set of boundary arcs that have been attached
to preceding arcs. Then in order to change the
numeration from order (¢g—1) to order ¢, we draw
the directed red line which crosses dotted and
full arcs alternately but does not cross the cut
arcs (thick black). The red line joins up with
itself: its first and last points coincide.

As we are using polygonal dissections, we will
make the lines L, the lines whose vertices will best
lead to an elegant design: centres of squares or
rectangles, point of intersection of the medians of
triangles.

But we still have to choose a dissection which
will work. We will not write the well-known
numerals this time. The elementary subsets at
stage (g) of the strip are naturally numbered
successively odd and even. The fundamental
subset 4, comprises the regions whose numerals
have the same parity: the odd numbers, for
example. They are shaded in the first stage in
Fig. 6.

Dissection into right-angled isosceles triangles

A particularly elegant figure is obtained by
dividing the given square by a diagonal, and then
following the rule: each triangle in stage (¢—1)
is divided into two triangles in stage (¢) by an
altitude. Tt is also possible to start with the four-
square Carroll diagram, which becomes the same
as the above at stage (3).

Dissection into rectangles and squares

We obtain squares and rectangles alternately
(see Fig. 7). We do not use parallel strips since the
need to connect them up would necessitate working
on the surface of a cylinder! So we alternate the
parallels to the two directions of the square.

By drawing figures with our conventions we
come up against an impossibility at stage (5).
Another false trail is shown in (3') and (4").
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3. A geometrical approach

A. We abandon the two-valued logic approach
in order to study the dissections and the sequences
L, which will cover the square.

Instead of splitting each square into two and
then two again, we will split it into four so that
we can choose between the two contours («) and
(o') which are now equally valid.
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The Dbest notation, naturally, will be base four. At
cach stage the diagram is determined by choosing
a starting point. From (3), for example, this free-
dom leads to two different drawings at each step
from (g) to (¢+1). We can best take account of
this by noticing the form of the cut lines (thick
black); this is why, in the absence of a theoretical
study, we must continue the graphical study a little
further. It is only in drawing the figures that it
also becomes clear how hypotheses about the nature
of the junctions intervene.

B. Since division into two parts no longer holds,
we may start to consider base three, which naturally
leads to triangular dissections. In order to work in
base three, the surface D which we cover with the
strips leading to the curves L, will not be a square
but an equilateral triangle (since we will only
consider straightforward symmetries). Each equi-
lateral triangle will be decomposed by radii of the
circumscribed circle into three congruent triangles
with angles 120°, 30°, 30°, and each of these will be
decomposed by the trisectors of the obtuse angle
into an equilateral triangle and two triangles
similar to the original. This will work since we can
satisfy the conditions of linking. The construction
is now easy.

The number of regions in the strip at stage (g¢)
is 37 this time, and this is also the number of vertices
on the line L,.
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In each case, whatever base we use, the notation
will lead to a rectilinear representation, as we
showed in the case of the Venn diagram. The
numbers are always understood as a set of digits
following the point, the integral part being zero.
We are always working therefore in the interval

F=fo, T,

4. Peano curves

The sequences of lines L, corresponding to our
dissection has a limit when ¢ tends to infinity. A
limiting curve L of this kind is a Peano curve. We

will show that it exists and exhibit some of its
properties.

A. Let b be the base of numeration (we have
already used 2, 3 and 4). Each strip B, is formed
from b? elementary regions covering the initial
domain D. The number of regions tends to infinity
with g. At the same time, the greatest diameter of
these regions, say J,, tends to zero.

(1) Let there be ¢ digits after the point:
t,=0-a1a3a5 . ., where {, is written in the chosen
base. The number with ¢ digits is the numeral



attached to one of the elementary regions, and
vice-versa. Each region can be defined as the inter-
section of the regions represented by the sequence
obtained at previous stages of the numeral: 0-a,,
0-a,a,, 0-aya5a;, . . . This is a nested sequence of
regions.

(2) Now consider a real number belonging to
the interval I i.e. a number defined by an un-
limited sequence of digits ;. The infinite sequence
of nested regions whose diameter tends to zero has
a limit point m of D. Projecting onto two coordinate
axes, this point is given by its coordinates x and »
which are the limits of the nested segments
obtained by projection of the elementary regions.

(3) Lettbeany number of [0, 1]. We associate
with it a point m of D defined by a function f:/—-D.
The fact that the numbers which can be written
with a finite number of digits have two infinite
forms does not matter since the two versions
correspond to neighbouring regions and so lead
to the same limit. (For example, notice that on
the base two diagram, 0-11=0-11000 . . . =
0-10111 & + )

But is the converse true, that a point m of D
corresponds to a given number ¢? The function f
is obviously surjective since the strips, considered
as composed of edges, cover D. But some points m
clearly correspond to several numbers because of
the slits. A point on a slit is the limit of points
which are not adjacent on the strip, and so are
not adjacent in the notation. If we look at the
growth of the slits in our drawings, which we can
do because we have looked at several stages, we
see that a part can correspond, depending on the
dissection, to 1 or 2 or 3 or 4 numbers, or even 6
in the case of Fig. 10.

Therefore the function is not bijective.

But the function is continuous, for by the construc-

tion, every two neighbouring numbers ¢ have
neighbouring images m. Formalising this: let m,
be the image of ¢,. To show that dist (mm,) < d it
is sufficient, provided ¢ is chosen so that d, < 4, to

note that ¢ has more than ¢ digits in common with
Bye
B. The limit of the sequence L;

We choose two axes and use cartesian coordinates
(x, ») which define the point m. Each curve L, is
the set of points obtained from ¢ by two functions

ot t—=x hy: t—y
These functions are continuous since the line Z, is.
They are defined on /. We note that in order to
obtain the best expressions for these functions we
do not choose the vertices of L, which we used to
get the best diagrams. But since the curve L, is
defined by arcs determined by a particular starting
point, it is obvious that it will not be easy to find
expressions for the functions.

We consider the continuous functions g, defined
on I. They form a sequence. We show that when ¢
tends to infinity this sequence yields a limit
function g.

For any d > 0 we can choose ¢ large enough to
make d, < d. Then for any ¢ € I, and any ¢, ¢,
greater than g,

(& (6) —& ()| <d

This shows that the sequence of functions tends
uniformly to a limit ¢ defined and continuous on 1.
In the same way, the functions 4, have a limit A
defined and continuous on . Consequently the
sequence L; has a limit, the curve L, which is the
set of points satisfying x=g(¢), y=£(t). (The curve
becomes a trajectory if ¢ is taken to be time.)

So we obtain the Peano curve corresponding to
each of our dissections. This curve, passing through
all points of the domain D, is the image of I, and
hence of a line segment, by the function f; it is
defined on /, surjective and continuous, but not
bijective. Since the curve obviously has no tangents,
the functions ¢ and % are continuous but not
differentiable.

5. A historical note

The definitions of the functions g, and #,, and
then of g and £, can only be expressed algebraically
by starting from the chosen base of numeration.
Peano made this clear in a short note published
in 1890 (Math. Ann., Vol. 46). The curve he
defined, without using any geometry or calcula-
tions, is not one which can be derived from taking
to the limit any of the sequences we have used. In
effect he used base three and filled a square with
a curve which is not closed. (This latter point is
not significant since we can obtain a closed curve
by applying symmetry operations.)

The formulae are extraordinarily simple and can
be written in a few lines with modern notation.

We write ¢ = 0-@ya, . .. a, . . . (base 3)
x = 0b1by ... by, ..
¥ =005 . .Cn. ..
and ay+ay+ . . . +am=us(mod 2)
a3 +az+ . . . +am_=a,'(mod 2).

A permutation p of {0, 1, 2} is defined by p(0)=2,
p(1)y=1, p(2)=0.
The formulae are then

1

o ®
by=ay, bo=p "Hayu—s), Cx=p "(ay).

But Peano said nothing which leads to these laws.
The following year, Hilbert, in the same periodical,
showed a construction very similar to our Fig. 9
(the curve not being closed). He used base six
notation by taking only successive numerals
independently of the structure of the diagram, and
by introducing the projections x and y. Although
giving a more intuitive geometrical example than
the arithmetical example used by Peano, he failed
to show the processes which led up to the example.

Cantor had already given examples of a bijective
correspondence between points of a line segment
and a region, but his functions were discontinuous.
The object of Peano’s note was to obtain con-
tinuity, but he achieved it at the expense of
bijectivity.



