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From Venn Diagrams to Peano Curves

I/t'e start b2 translating the structure olf a tu.,o-ualued
Iogic ittto a [/etm tiiqqrarn, which sets us certain draLuitLg
tasl;s. Gradualj losittt our original aim, we let tltese
deuelop and see what liappens.

1.

A. In a two-valued logic, the consideratjon of
selera.l independent attributes s/r, .dr, e/", .

rvhich are possessed or not possessed by all the
elements of a reference set, gives rise to a truth
table which can be conveniently laid out in the
form of a branching tree, where 'f-' stands for
'true' and 'F' lot'false'.
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For two zrl.tributes this drawing of a partial
order gives lour chair-rs forining the sequence
TT, TF, FT, FF; lor three attributes a sequerice of
eight chairrs: TTT, TTF, TFT, TFF, FT'f, F'fF,
FFT, FFF. With n attril:utes there is a sequence
of 2' chains v,'hich exhaust all the possibilities of
attributing 'true' or 'false' to the elements of the
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reference set. So each chain corresponds to a
Iogically defined subset which r,r'e will call an
elementarlt set qif order n. Fundamental subsets are those
for which the elements give the same response
when tested on a single attribute; for example, ,4,
is the subset of elements for which ,ilris trie; Arj
the subset of elements lbr which -el, is false (and
so the complement of Ar). Simiiarly ,4, is theFig. 1
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subset for whose elements ,&, is true, and so on.
Thus ,4, corresponds to the set of chains which
have a Z in the first place; A, the set of chains
which have Z in the second place, and so on.

B. When there are only a few attributes, the
situation described by the tree is represented by a
Verrn cliagram: each fundamental set lr, tlr,
is represented by a connected region (a single
piece) bounded by a simple closed curve (i.e. one
which does not cross itself ). The set of these
curves forms an overlapping pattern in which
the parts represent the elementary subsets. Llaking
the canstraints more precise: two boundaries can cut each
other, but only in distinct points, attd without a clmmln
arc between them. 'L'his set of curves is completed by
an outer boundary - a rectangle, lbr example -
which is coverecl by the set of regions at aîy
stage, oric ul therrr lreing a ring.

It is easy to nrake a drawing ft--r 1,2 or 3 attri-
butes: r,ve write the members of each chain in
each region of the pattern.

Ilut the problem is to deternrine a strateey in
order to carry on the process to 4,5,. . . attributes.
Can we keep to the constraints that we have
imposed on ourselves ?

'Io find an ans!\ier let us look closely at how v,,e
begin.

At the trst stage, Fz'g. 3 consists of a loop with
its interior marked T and the annular region
n arked F. At stage (2) we draw the boundary ,K,
with a dotted black line to show that it is the last
one to be dralvn, and write the names of the four
chains of the tr:ee. 1'o get to stage (3), we mark a
(red) point in each of the elementary regions of
stage (2) and join them up, step by step, with red
arcs so that each arc crosses the cornmon boundary
of the two regions. This arranges the regions in
order, and the three non-annular ree-ions lbrm a
strip. 'I'lre linked regions are FT, TT and TF,
which is not the natural order of the chains in a
tree, where FT a:nd ZF would be consecutive.

On the diagrarn ol the strip (2') (,Fig.3), as on
the Venn diagram (2), the new order is shorvn
with a directed red arc. By closing this arc in the
annular region, we get a nelv curve rT, which,
drawn :rs a black dotted line, '"vill serve for the
diagram ofstage (3). (\\te rrust be quite sure that
a new boundary docs not pass through any point
common to the existing curwes.)

This is the procedure we follow. To define the
procedure more clearly, Iet us show how to allocate
numerals to the so-r:2q-L-1 regions which make
up the strip at stage (q- l). As each line .K, divides
each region frorn the previous stage into two parts,
it is natural to use base trvo notation. In (1) we put
0 1'or the annular region and I for the inside of the
loop. In (2) we use the four numerals consisting of
nvo digits. We will agree to rnark the annular region
00 and lbllow the (arbitrary) sense of the red line.
At stage (q) we rrill need 2a numerals each

consisting ofq digits.
Suppose the dralving has been completed up rrr

stage (q-l). The diagram q') of the strip shorvs
us how to pass to stage iç,. The strip compri:es
the successive regions 17q-1, r2s_r, n.hose
numerals, each of (q- 1) digits, are

000... 1,000... 10, 111 ... l.
We draw a dotted black line dou.n the rriiddle

of the strip; it forms 2q-2 regions. In order to
define the new strip, we give the regions q-digit
numerals following the red arc in the order
already used. Each elementary region of order
(q-1) is divided into two parts which rt-e indicate
by r.vriting first 0 and then I at rhe right of the
nurneTal of the region. Therefore the red line
alternately crosses a dotted and a full iine. In tu'o
of the figures we see that an unclotted arc is not
crossed within the strip, and will not be crossed in
what follows: we mark these in thick black. 1-o get a
concrete realisation of the strip we n)ust cut the
paper along the arcs which form its two edges.

As the q-digit numeral 000 . . . 0 is allocated to
the annular region, the numeral 000 1 is
reserved for the region obtained by clcsing the
dotted line; it becomes the first region of the
strip at stage (4) . The second region of this strip,
written 000 . . . 10, is one of the two regions formed
in rto-' which is linked with the first region.

Lastly, since iq--24-l is clearly odd, the red
arc delinitely ends in the annular region, and
everything is ready for the next stage: the red
arc is closed, replaced by a dotted black line, and
the proeramme is re-run.

It is important to stress that each red line, having
served to define the strip and its numbering, be-
cornes the boundary at the next stage. The thick
black lines along which we can cut beconre longer
and fork in the Venn diagram. In moving from
one stage to the ne):r. the digits of each numeral
are retained from the left. Consequently the
notation will teil us if one regior-r is included in
another. The included region has more digits,
ancl so represents a larger number in base two.

We irave already pointed out that our numbering
does not correspond to the order of the chains in
the logical tree. So how can we recosnise the
eiementary region which corresponds to each
fundamental set Ar, Ar, . . , ? T'hese sets are deter-
mined by a certain number of digits from the left.
So if'q is the number of attributes, l, is the set of
elernentary regions having numerals.

f I I\,J
{10, ll}

for q:1
fo'" q:l

{100, 101, ll0, lll} for q:3
In the same way, 0l . . . represents the set of
numerals with left hand digits 01, ctc. \\'e can
now draw up a useful table which shor.vs the
composition of tl-ie fundanental reqions for each
value of q. (\ 'e show the natural order of the
numelals by an arrow.)
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The law is now obvious. 1'o every Boolean
function formed by using complementation, inter-
section and union, corresponds a set of numerals
which can easily be written down from our lcnow-
ledge of how to represent inclusion.

C. Rectilineardiagrams
Suppose we regard the numerals we have used

as sets of digits following a point: we have numbers
written in base two with the integral part zero.
All of these n-digit numbers, for all values of n,
belong to the interval /:[0, 1]. Knowing the first
digits after the point allolvs us to associate with
each elementary region an interval lvhich is ciosed
on the left and open on the right. The union of
these intervals is 10, 1]. Sets of these inten'als are
associated with the fundamental subsets. Let us

mark the images of Ay Az, . in red, atrd the
images of their complements in black. Then a
sequence of elementary regions from successive

stages, associated with the numbers 0'ar, 0'arar,
}'araraB, . . . (a;e {0, l}), correspondsto asequence
of nested intervals.

l,l,l,l,l
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Il rve imagine an inÊnite sequence of attributes,
an elementar,v region becomes associated with a

real number, and so r,vith a point of [0, l]. Con-
versely, each point ofthe interval can be associated
with at least one infinite sequence of elernentary
regions, each one included in the next. It is

necessary to distinguish between, say, 0'110000
. ., and 0'101111 . . ., lvhich aredifferent fonns
of the same number 0'11, because they do not
represent the same region. In the strip, hou'ever,
at each stage, the corresponding regions are coir-
secutive, for example, in (2) we see 11 and l0;
in (3) rve see 110 and 101; and in (4) r'e see I 100

and l0ll, etc.

The question which now emerges is whether
each sequence of regions, each included in the
next, can be considerecl as defining a limiting
resion. \\'e rvill see how these conditious are trtet
ir-r the next section.
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2. Disseetion diagrams
In honour of Lewis Carroll we olïen draw

'Carroll diagrams' which, when there are two
attributes, represent each of the fundarnental
subsets J, and A, by a half of a square formed by
bisecting opposite sides. By putting one on top of

the other, we get a perfect representation of the
tree of order two. Unlike the Venn diagram, the
Carroll diagram allows each fundamental region
to play the same role as its complement. There is

no precedence accorded to the values 'true' and
tfalse'.



How can wc develop the diagram, though, to
deal with more than two attributes ? It is tempting
to represent .4r by the interior of a circle whose
centre is at the centre of the square, and continue
with simple closed curves. But this is to recreate
the Venn diagram from an unsuitable beginning.
We have to try another direction. It is essential
always to divide each of the regions at stage (q - I )
into two since we are dealing with a two-valued
logic. To help separate the regions we will still
preserve a cyllic order and, naturally, keep to a

base two notation. But the big difference is that
the red line (Zt), which shows the order of the
regions and which therefore defines a strip, will no
longer act as a boundary. The boundaries will be
found by dissecting the square into elementary
rectangles as we please.

In the diagrams, if the dissection corresponding
to the order (q-l) is marked with biack lines and
the edge of the strip with thick black lines, the next
order is obtained by tracing witir a black dotted
line a set ofboundary arcs that have been attached
to preceding arcs. Then in order to change the
numeration from order (q- l) to order q, we draw
the directed red line which crosses dotted and
full arcs alternately but does not cross the cut
arcs (thick btack). The red line joins up with
itself: its first and last points coincide.

As we are using polygonal dissections, we will
make the lines Z, the lines whose vertices will best
lead to an elegant design: centres of squares or
rectangles, point of intersection of thc medians of
triangles.

But we still have to choose a dissection which
will work. We rvill not write the weli-linown
numerals this time. The eiementary sul)sets at
stage (q) of the strip are naturaliy Irumbered
successivcly odd and even. The fundamental
subset ,4n comprises the regions rvhose numerals
have the same parity: the odd numbers, for
example. 1-hey are shaded in the first stage in
Fig.6.

Dissection into right-angled isosceles triangles

A particularly elegant figure is obtained by
dividing the given square by a diagonai, and then
following the rule: each triangle in stage (q-l)
is divided into two triangles in stage (q) by an
altitude. It is also possible to start lvith the four-
square Carroll diagram, which becomes the same
as the above at stage (3).

Dissection into rectangles and squares

We obtain squares and rectangles alternateiy
(see Flq. 7) . We do not use parallel strips since the
need to connect them up would necessitate working
on the surface of a cylinder ! So we alternate the
parallels to the two directions of the square.

By drawing figures with our conventions we
come up against an impossibility at stage (5).
Another false trail is shown in (3') and (4').
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Fig.7

3. A geometrical approach
A. We abandon the two-valued logic approach
in order to stucly the dissections and the sequences
Z, which will cover the square.

Instead of splitting each square into two and
then two again, we will split it into four so that
we can choose between the two contours (e) and
(a') which are now equally valid.

ffiffi
(d) tal

Fig. B

The best riotation, naturally, will be base four. At
each stage the diagram is determined by choosing
a starting point. From (3), for example, this free-
dom leads to trvo different drawings at each step
from (q) t" (q*i). lVe can best take account of
this by noticing the form of the cut lincs (thick
black) ; this is rvhv, in the absence of a tl.reoretical
study, rve must continue the graphicai study a little
further. It is onlv in drarving the figures that it
also becomes clear how hypotheses about the nature
of the junctions intervene.

B. Since division into two parts no longer holds,
lve may start to consider base three, which naturally
Ieads to triangular dissections. In order to work in
base three, the surface D which we cover with the
strips leading to the curves Z, will not be a square
but an equilateral triangle (since we will only
consider straightforward symmetries). Each equi-
lateral triangle will be decomposed by radii of the
circumscribed circle into three congruent triangles
with angles 120o, 30o, 30o, and each ofthese lvill be
decomposed by the trisectors of the obtuse angle
into an equilateral triangle and two triangles
similar to the original. This will work since we can
satisfy the conditions of linking. The construction
is now easy.

The number of regions in the strip at stage (q)
is 3a this time, and this is also the number of vertices
on the line Zo.
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In each case, whatever base we use, the notation
will lead to a rectilinear representation, as we
showed in the case of the Venn diagram. The
numbers are always understood as a set of digits
foliowing the point, the integral part being zero.
We are always working therefore in the intervai
1:[0, l].

4. Peano curves
T'he sequences of lines Zu corresponding to our

dissection has a limit when g tends to infinity. A
limiting curve Z of this kind is a Peano curve. We

will show that it exists and exhibit some ol' its
properties.

A. Let â be the base cf numeration (lve have
already used 2,3 and 4). Each strip -Bo is {brmed
from bq elementary legions covering the initial
domain D. The nurnbel o['regions tends to infinity
with q. At tlte same time, the greatest diameter of
these regions, say Jq, tends to zero.

(l) Let there be 4 digits after the point:
t,t:-}'a(zas , where fo is wlitten in the chosen
base. The number with g digits is the numeral



âttaclled to one of the eiementary regions, and
aice-uersa. Each region can be defined as the inter-
section of the regions represented by the sequence
obtained at previous stages of the numeral: 0.ar,
O.arar, O.arara", . . Thrs is a nested seqtrence of
regicns.

(2) Now consider a real number belonging tcr

the interval I; i.e. a number defined by air un-
limited sequence of digits ar. The infinite sequence
of nested regions whose diameter tends to zero has
a limit point m of D. Projecting onto two coordinate
axes, this point is given by its coordinates x and2
which are the limits of the nested segments
obtained by projection of the elementary regions.

(3) Let f be any number of [0, 1] . We associate
with it a point m of D defined by a function f:I -.,D.
The fact that the numbers which can be written
with a ûnite number of digits have two infinite
forms does not matter since the two versions
correspond to neighbouring regions and so lead
to the same limit. (For example, notice that on
the base two diagram, 0.11:0.11000
0.10111 . . .)

But is the converse true, that a point m of D
corresponds to a given number ,? 1-he function./
is obviously surjective since the strips, considered
as composed of edges, cover D. But some points z
clearly correspond to several numbers because of
the slits. A point on a slit is the limit of points
which are not adjacent on the strip, and so are
not adjacent in the notation. If we look at the
growth of the slits in our drawings, which we can
do because r.r'e have looked at several stages, we
see that a part can correspond, depending on the
dissection, to I or 2 or 3 or 4 numbers, or even 6
in the case of F4g. 10.

Tlterc,fore thefunction is not bijectit'e.
But the function is continuoars, for by the construc-

tion, every two neighbouring numbers / har-e
neighbouring images m. Formalising this: let mn

be the image of lo. To shorv tliat dist nnt| 1- d it
is suilcient, provided q is chosen so that d, -- d, to
note that I has more than q digits in common llith

B. The limit of the sequence Zi
We choose two axes and use cartesian coordinates

(r,7) which define the point m. Each curve Zo is
the set of points obtainecl lrom I by tlvo functions

o'l+y h t-èq'' " "q'' )
These functions are continuous since the iine Zo is.
They are defined on 1. We note that in order to
obtain the best expressions for these functions we
do not choose the vertices of Zo which we used to
get the best diagrams. But since the curve Zn is
defined by arcs determined by a particular starting
point, it is obvious that it will not be easy to find
expressions for the functions.

We consider the continuous functions go defined
on 1. They form a sequence. We show that when q

tends to infinity this sequence yields a limit
function g.

Iior any d > 0 we can choose q large enough to
rnake dn < d. Then for any t e I, and any Qt, llz
greater than q,

lsor(e) -ccz(t)l<d.
This shows that the sequence of functions tends
unil'ormlv to a limit g defined and continuou-s on L

In the same rvay, the functions hohave a limit i
defined and continuous on L Consequently the
sequence L; has a limit, the curve Z, which is the
set of points satisfying x:g(t),1t:lt (r). (The curve
becomes a trajectory if I is taken to be time.)

So we obtain the Peano curve corresponding to
each ofour dissections. This curve, passing through
all points of the domain D, is the image of 1, and
hence of a line segment, by the function J it is
defined on I surjective and continuous, but not
bijective. Since the curve obviously has no tangents,
the functions g and à are continuous but not
differentiable.

5. A historical note
The definitions of the functions gn and ho, and

then of g and h, can only be expressed algebraically
by starting from the chosen base of numeration.
Peano made this clear in a short note published
in lB90 (Math. Ann., Yol. 46) . The curve he
defined, without using any geometry or calcula-
tions, is not one which can be derived from taking
to the limit any of the sequences we have used. In
effect he used base three and filled a scluare with
a curve which is not closed. (This latter point is
not significant since we can obtain a closed curve
by applying symmetry operations.)

The formulae are extraordinarily simple and can
be written in a few lines with modern notation.
Wewrite t : 0.a(2. . . an.. . (base3)

and

x:O.bJz. .bn.
j-0'c{2...cn...
az .-ati . . !az,:a,(mod 2)
a11as:- ïa2,.:o,r'(mod2).

^\ permutationl of {0, l, 2} is defined by p(0):2,
p(I):\, pr,.l):Q.
The formulae are then

o- ot
br-ar, bn:p "-2(a2n_r), cn:p "(a2).

But Peano said nothing lr,'hich leads to these laws.
The following year, Hilbert, in the same periodical,
showed a construction very similar to our Fig, 9
(the curve not being closed) . He used base six
notation by taking only successive numerals
independently of the structure of the diagram, and
by introducing the projections x and 1. Although
giving a more intuitive geometrical example than
the arithmetical example used by Peano, he failed
to show the processes which led up to the example.

Cantor had already given examples of a bijective
correspondence between points of a line segment
and a region, but his functions were discontinuous.
The object of Peano's note was to obtain con-
tinuity, but he achieved it at the expense of
bijectivity.


